
Supplementing Modern Software Defenses with Stack-Pointer
Sanity

Anh Quach, Matthew Cole, Aravind Prakash

Binghamton University

{aquach1,mcole8,aprakash}@binghamton.edu

ABSTRACT
The perpetual cat-and-mouse game between attackers and software

defenders has highlighted the need for strong and robust security.

With performance as a key concern, most modern defenses focus

on control-flow integrity (CFI), a program property that requires

runtime execution of a program to adhere to a statically deter-

mined control-flow graph (CFG). Despite its success in preventing

traditional return-oriented programming (ROP), CFI is known to

be ineffective against modern attacks that adhere to a statically

recovered CFG (e.g., COOP).

This paper introduces stack-pointer integrity (SPI) as a means
to supplement CFI and other modern defense techniques. Due to its
ability to influence indirect control targets, stack pointer is a key

artifact in attacks. We define SPI as a property comprising of two

key sub-properties - Stack Localization and Stack Conservation - and
implement a LLVM-based compiler prototype codenamed SPIglass
that enforces SPI. We demonstrate a low implementation overhead

and incremental deployability, two of the most desirable features for

practical deployment. Our performance experiments show that the

overhead of our defense is low in practice. We opensource SPIglass
for the benefit of the community.

ACM Reference Format:
Anh Quach, Matthew Cole, Aravind Prakash. 2017. Supplementing Modern

Software Defenses with Stack-Pointer Sanity. In Proceedings of ACSAC 2017.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3134600.3134641

1 INTRODUCTION
Software attacks that compromise and hijack control-flow continue

to be a real and existential threat. Widely deployed hardware mech-

anisms that prevent data execution (DEP/NX) have given rise to

modern “code-reuse" attacks, i.e., attacks that reuse existing code

to accomplish malice [35]. Return-oriented programming (ROP)

is an example of code-reuse attack wherein an attacker executes

a carefully selected sequence of “gadgets". A gadget is a short se-

quence of instructions terminated by an indirect branch instruction

(e.g., ret). A popular form of defense against modern attacks in-

volves embedding software with security primitives in an effort to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC 2017, December 4–8, 2017, Orlando, FL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5345-8/17/12. . . $15.00
https://doi.org/10.1145/3134600.3134641

harden programs and render them attack resilient. Enforcing pro-

gram integrity properties, especially control-flow integrity (CFI [3])

through inlined reference monitors is a well-studied and estab-

lished defense technique. CFI requires the runtime execution of a

program to adhere to a statically determined control-flow graph

(CFG). CFI-based solutions that operate on both source code [3, 39]

and binary [17, 31, 44, 45] have been proposed.

Practical CFI-based defenses are known to suffer from the fol-

lowing limitations: (1) Lack of a precise CFG: indirect branches

in a program make full CFG determination hard, if not impossi-

ble [34, 41]. Without a complete CFG, defenses compute an approx-

imate CFG containing redundant forward and reverse edges [45].

These redundancies result in attack space. (2) Lack of temporal

sensitivity: while the CFG captures what control transitions are
legal, it does not reflect when those transitions are legal. These

limitations are exasperated by practical considerations like sup-

port for incremental deployment, support for dynamically loaded

modules, etc. (3) Data hiding problem: meta-data based solutions

including the shadow stack solutions depend on integrity of the

shadow stack. That is, their success depends on effective hiding of

data in the memory. However, hiding data in user space is hard [27]

and an open research problem. Other approaches for shadow stack

either require special hardware or incur significant performance

overhead.

By abusing the limitations of practical CFI, recent attacks in-

cluding Counterfeit Object-Oriented Programming (COOP [20, 36])

and Printf-Oriented Programming [8] demonstrate that even so-

phisticated defenses can be successfully evaded. While more recent

defensive efforts have focused on improving the performance of

practical CFI, Carlini et al. [8] show that even fully-precise static
CFI solutions can be defeated. In essence, a solution with strong

and robust security is more useful than well-performing solution

lacking in security.

In this paper, we approach defense from a fundamentally differ-

ent, yet complimentary point of view when compared to traditional

control-flow-based defenses. We note that attacks often abuse stack

and violate its intended use. Particularly, attacks violate the in-
tegrity of stack pointer, so we focus our defense around sanity of

stack pointer. A key difference between our approach and CFI is

that we do not seek to monitor the control flow of the program,

whereas we seek to enforce legal use of stack pointer. By doing

so, our solution can not only operate as a standalone solution, but

also cooperate with existing CFI-based defenses, and enhance the

overall security.

We define Stack-Pointer Integrity (SPI) as a program property

that captures the intended movement of stack pointer, and design

a system that enforces this property. Shifting perspective from

116

https://doi.org/10.1145/3134600.3134641
https://doi.org/10.1145/3134600.3134641

instruction-pointer-centric defense (CFI) to stack-pointer-centric

defense (SPI) presents multiple advantages.

(1) Unlike flow of control, flow of stack pointer is well defined,

and we are therefore not constrained by completeness and

precision of the CFG.

(2) Rules that govern the movement of stack pointer are inde-

pendent of the location of data/code in the memory. As such,

SPI does not depend on address-space layout randomization

(ASLR).

(3) Unlike solutions that focus on integrity of stack content [9],

SPI focuses on integrity of the stack pointer. By doing so, we

lessen the performance penalties incurred in validating the

stack contents.

(4) Finally, SPI and CFI are orthogonal solutions, and can com-

plement each other to provide strong defense.

We develop the SPI policy for programs executing on the x86 ar-

chitecture and implement a prototype system codenamed SPIglass.
SPIglass is an LLVM-based compiler that instruments programs

with SPI checks that are performed during runtime. We also pro-

vide techniques to enable interoperability between protected and

unprotected modules.

Can SPI defeat all code-reuse attacks? Although SPIglass can
thwart several practical code-reuse attacks on its own, it is designed

to supplement practical CFI implementations to provide stronger

security. This is particularly important given that most practical

CFI efforts have been defeated [8].

Our contributions can be summarized as follows:

(1) We define Stack-Pointer Integrity (SPI) as a program property

that complements CFI and comprises of two sub-properties

Stack Localization and Stack Conservation.
(2) We implement SPIglass, a LLVM-based prototype that imple-

ments SPI. SPIglass can defeat modern code-reuse attacks,

including COOP.

(3) We evaluate SPIglass, and show low execution overhead and

reasonable memory overhead.

(4) We opensource our implementation of SPIglass to aid in

future research and development
1
.

2 TECHNICAL BACKGROUND
During a code-reuse attack, the attacker repeatedly executes the

ULB sequence: Update the processor state, Load the address of next
gadget into instruction pointer, and Branch to it. Depending on

whether or not the stack pointer is used in ULB sequence, code-

reuse attacks can be divided into two categories.

2.1 Attacks that Use Stack Pointer for ULB
Sequence

Due to the availability of multiple instructions (e.g., push, pop)
that update the stack pointer and the ready availability of ret
instruction that loads and branches to the address at the top of stack,

stack pointer is widely used in ULB sequences. These are the most

common ROP attacks wherein the stack pointer assumes the role of

instruction pointer. An example of such an attack can be found in

1
The source code is available at https://github.com/bingseclab/spiglass

Figure 1. First, an attacker injects a payload that contains interleaved

code pointers and data. Each pointer points to a gadget, and the

sequence of gadgets together accomplish malicious computation.

Next, the attacker exploits the vulnerability, and obtains control

of the instruction pointer. The attacker utilizes a special gadget

(Gadget 0 in Figure 1) to position the stack pointer to the base of the

injected payload, i.e., RSP2 to RSP3. This step, called stack pivoting,

transitions execution into the ROP domain. The gadget used to

pivot is called a pivot gadget. Finally, the ret instruction in the

pivot gadget triggers the execution of the remaining gadgets in the

payload. In Figure 1, the control flow is represented as a solid arrow

whereas the movement of stack pointer is represented as a dashed

arrow.

Stack pivoting. Stack pivoting positions the stack pointer to the

base of the injected payload. Instructions that alter the stack pointer

are called ‘SP-Update’ instructions [32]. They are divided into ex-

plicit SP-update instructions or instructions that explicitly alter the

stack pointer (e.g., mov rax, rsp; add rsp, 0x10;), and implicit

SP-update instructions that alter the stack pointer as an implicit ef-

fect of another operation (e.g., pop rax; ret;). Explicit SP-update
instructions are further divided into absolute (e.g., mov rax, rsp;)
and relative (e.g., add rsp, 0x10) SP-update instructions.

A stack pivot gadget comprises of an SP-update instruction fol-

lowed by an indirect branch instruction. Depending on the location

of payload, one of two forms of pivoting can occur:

(1) Inter-segment pivoting: the payload is located in a writable

segment other than the stack (usually heap).

(2) Intra-stack pivoting: the payload is located on the stack seg-

ment. Typically, the attacker injects payload into the local

variables/arrays of a function. For example, in Figure 3, the

array in F6 is used to store user input, which contains the pay-

load. Here, pivot gadget displaces the stack pointer within

the stack segment.

Mobility of the stack pointer depends on the specific SP-update

instruction in the gadget. Absolute SP-update instructions offer

the attacker with an ability to initialize the stack pointer with

an arbitrary value, and are therefore most favorable for pivoting.

Relative SP-update instructions move the stack pointer by fixed

offsets, and therefore offer moderate mobility. Implicit SP-update

instructions move the stack pointer by small offsets, offer least

mobility, and are least useful for pivoting.

2.2 Attacks that Do Not Use Stack Pointer for
ULB Sequence

While stack pointer is commonly used in ULB sequence, it can be

abused in other ways. COOP [36] is an exemplar of code-reuse

attack without stack pivoting. It is a C++-based attack that takes

advantage of the dynamic dispatch mechanism in C++, and reuses

entire virtual functions as gadgets. Virtual functions in C++ are

dispatched using VTable—a per-object table that contains all the

polymorphic functions an object can invoke. COOP reuses a special

type of gadget called main-loop gadget that executes a single virtual

function on an array of objects. By injecting carefully ordered

and potentially overlapping array of fake objects that point to

117

F3

F4
Exploit in F4()

Stack Frames Pivot Operation

Gadget 0:
xchg rax, rsp

ret

Gadget 1:
mov rax, rbx
ret

Gadget 2:
pop rcx,
pop rdx
add rax, [rcx]
ret

Gadget 3:
...

F3()

F4()

RSP0

RSP1

RSP2

...

&Gadget 3

Data

Data

&Gadget 2

&Gadget 1

Payload on
Heap/Stack

RSP3

RSP4

Figure 1: Movement of stack pointer in attacks that use stack pointer for ULB sequence. Stack grows downwards.

fake VTables in the victim memory, COOP achieves arbitrary code

execution. We refer the readers to [36] for more details.

ESPBefore

Main Loop
Gadget’s Frame

ESPAfter Gadget(x)

ESPAfter Gadget()

ESPAfter Gadget(x,x)

Figure 2: Stack realignment in COOP (32 bit). In this exam-
ple, the virtual function that is called in the main-loop gad-
get accepts one argument. ESPBef ore and ESPAf ter represent
values of stack pointer before and after the execution of gad-
gets. Stack grows downwards.

Consider Figure 2, a mismatch in the number of arguments ac-

cepted by the gadgets versus number of arguments supplied at

the invocation site in the main-loop gadget will result in a mis-

alignment of stack pointer before and after the call to gadget (refer

Figure 7 in [36] for details). This is particularly a problem in 32-bit

environment where all the arguments are passed on the stack.

The values of the stack pointer before (ESPBef ore) and after

(ESPAf ter) invocation of gadgets with 0, 1 and 2 arguments are

shown in Figure 2. In order to prevent stack corruption, the attack

must either restrict the gadgets to only those functions that accept

the same number of arguments that are supplied at the invoca-

tion site, or accommodate compensatory gadgets that realign the

stack pointer after each misalignment—e.g., gadget that accepts

2 arguments followed by gadget that accepts no arguments. The

former choice greatly reduces the number of gadgets available to

accomplish the attack, therefore COOP uses the latter technique to

align the stack pointer.

2.3 Stack Pointer Updates in Benign Execution
Below,we list common operations that alter the stack pointer during

benign execution, and the instructions used to accomplish them.

Control-transition using call-ret. Implicit SP-update instruc-

tions call and ret, and their variants (e.g., retn) automatically

store and retrieve return address from the stack, and therefore

update the stack pointer.

Save/Restore registers.Depending on the calling convention, cer-
tain registers (rbx, rbp, r12-r15 on Linux x86-64) are saved on the

stack by the callee and restored before returning to the caller. The

push and pop instructions are typically used to save/restore regis-

ters. Registers are saved before allocation of a function frame and

restored after deallocation of the frame.

Frame allocation and deallocation. Local variables are allocated
within the function frame on the stack. Allocation and dealloca-

tion are typically achieved using relative SP-update instructions

by moving the stack pointer by a fixed offset along and against the

direction of stack growth respectively (e.g., sub rsp, 0x10; add
rsp, 0x10).

Dynamic frame allocation anddeallocation.Absolute SP-update
instructions are used to restore the stack pointer with a previously

saved value when the size of a stack frame is not known during

compilation, or during irregular flows like longjmp, exceptions, etc.
These are rarely encountered.

3 THREAT MODEL AND ASSUMPTIONS
We accommodate a highly capable attacker with full knowledge of

the loaded modules and the gadgets within—with or without ASLR

enabled. We assume that the attacker is able to generate a payload

comprising of potentially large call-preceded and function-entry

gadgets such that known defenses (e.g., [44, 45]) can be bypassed. In

a call-preceded gadget, the gadget is preceded by a call instruction
and forms a valid backward-edge for return instructions in the CFG.

A function-entry gadget begins at the entry point to a function and

is a valid forward-edge for indirect call instructions [18]. Further,

the attacker is able to inject payload into the vulnerable program,

and has the capability to exploit a vulnerability in a program and

achieve arbitrary code execution. Because the payload may be in-

jected on the stack, modern defenses against stack-pivoting [32]

can be successfully bypassed. We also assume that the attacker

is unable to execute unintended instructions (i.e., instructions ob-

tained by offsetting into legitimate instructions). Finally, all gadgets

- including a potential pivoting gadget - are not only sequence

of intended instructions, but also call-preceded or function-entry

gadgets. Note that multiple efforts that focus on elimination of

118

void F6() {

 int array[64];

 get_input(array);

 //vuln: jmp *rbx

}

<F6>:

push rbp

mov rbp, rsp

sub rsp, 0x88

jmp *rbx

add rsp, 0x88

ret

Payload in array

F6() s frame <some_func>:

push rbp

mov rbp, rsp

sub rsp, 0x18

call func

call_prec_gadget:

add rsp, 0x18

pop rbp

ret

0x88

0x18

Figure 3: Pivoting within the stack region. A call-preceded
gadget in some_func is abused as a pivot gadget through a
vulnerability in function F6.

unintended gadgets [28, 29] and the state-of-the-art in CFI make

similar assumptions [44, 45].

Consider Figure 3 where the attacker injects payload into a

function’s stack frame and exploits a vulnerability to invoke the

call-preceded gadget in another function to pivot the stack pointer.

These attacks can manifest as payload injection in one frame and

exploit in another frame, and are known to be practical [15]. While

pivoting-based solutions [14, 32] can not defend against such at-

tacks, they are well within the scope of our solution.

4 SPI – OVERVIEW
4.1 SPI – Property
This work is driven by the observation that code-reuse attacks violate
the intended use of the stack pointer. In attacks that use stack pointer

in the ULB sequence, the stack pointer is abused to assume the role

of an instruction pointer, whereas in the case of modern COOP-type

attacks, the intended use of stack pointer is violated and results in

mis-alignment in stack frames.

We define the integrity of stack pointer using properties that

capture its normal behavior.We define SPI using two sub-properties:

P1 StackLocalization:The stack pointer always resideswithin
the stack region allocated for the current context (i.e., thread)

of execution. That is:

StackBaseThread < StackPointer < StackLimitThread
P2 Stack Conservation: The stack pointer is conserved across

function invocation. That is:

StackPointerBef ore_Func == StackPointerAf ter_Func

4.2 Our Approach
Property P1 has already been enforced by PBlocker [32] with low

overhead. This paper extends PBlocker to prevent not only inter-

segment pivoting, but also intra-stack pivoting. We reuse the tech-

niques implemented by PBlocker, and focus our effort on effective

enforcement of P2. We pursue the following enforcement goals:

Performance: Verifying the stack pointer values before and after a
function execution by utilizing a shadow stack is a potential solution

to enforce P2. Shadow-stack based solutions are well studied [12]

in the context of CFI. However, the shadow stack must be protected,

and updates to the shadow stack must be monitored in order to

prevent corruption. Hiding a shadow stack in user space is most

performance-friendly, yet hiding data in user space is hard [27]. If

the attacker can locate the shadow stack, she or he may be able to

corrupt it and evade the security mechanism.

F7() {

 int x, y;

 return;

}

128-byte Aligned

Return Addr

RBP

m[0]

...

m[0x5f]

...

128-byte Aligned

n[0]

...

n[0x5f]

...

128-byte Aligned

RSP0

RSP1

F8() {

 char m[0x60];

 char n[0x60];

 call foo();

 return;

}

dummy_var

128-byte Aligned

Return Addr

RBP

x

y

...

128-byte Aligned

RSP0

RSP1

Figure 4: Function frames generated by SPIglass for F7() and
F8(), small and large function frames respectively. A dummy
variable is inserted in order to prevent allocation of a local
variable at the n-byte boundary.

We make a memory-to-security trade off and improve security

at the cost of memory. Cost of memory has steadily reduced over

the decades. Memory overhead is more tolerable than runtime per-
formance overhead imposed by a security solution. Because the stack
pointer is indicative of the function frame allocation and deallo-

cation, movement of stack pointer can be greatly controlled by

adjusting the sizes of function stack frames. Specifically, if the size

of each function stack frame were n-byte aligned, then legal stack

pointer values must also be n-byte aligned. Using compiler mod-

ifications, we force the stack frame of each function to be n-byte
aligned by sanitizing the stack pointer after each explicit SP-update

instruction in the module. Further, we reserve n-byte aligned lo-

cations in functions with frames larger than n bytes by inserting

a dummy variable. This ensures that no legal variables are allo-

cated at aligned addresses. We sanitize the dummy variables to

disrupt possible attacks that overflow into the dummy variable.

Stack frames and the instrumented code for sample functions F7

and F8 are shown in Figures 4 and 5 respectively. Our solution im-

poses memory overhead that is approximately linear to the runtime

depth of the callstack. More details can be found in Section 6.

119

<F7>:

push rbp

mov rbp, rsp

sub rsp, 0x10

add rsp, 0x10

pop rbp

ret

<F8_protected>:

push rbp

mov rbp, rsp

sub rsp, (2n–2*DWORD_SIZE)

and rsp, MASK(n)

mov dummy, $0x0

call/jmp loc

mov dummy, $0x0

and rsp, MASK(n)

add rsp, (2n–2*DWORD_SIZE)

pop rbp

add rsp, (DWORD_SIZE)

and rsp, MASK(n)

sub rsp, (DWORD_SIZE)

ret

<F8>:

push rbp

mov rbp, rsp

sub rsp, 0xD0

call/jmp loc

add rsp, 0xD0

pop rbp

ret

<F7_protected>:

push rbp

mov rbp, rsp

sub rsp, (n–2*DWORD_SIZE)

and rsp, MASK(n)

and rsp, MASK(n)

add rsp, (n–2*DWORD_SIZE)

pop rbp

add rsp, (DWORD_SIZE)

and rsp, MASK(n)

sub rsp, (DWORD_SIZE)

ret

Figure 5: Assembly code for unprotected and protected func-
tion F7. The stack allocation (sub) and deallocation (add) are
modified to adjust allocation to alignment boundaries, and
the stack pointer is sanitized in the function prologue and
epilogue. A dummy variable is inserted in F8, and is sani-
tized before any control transition. An adjustment of two
DWORD_SIZE is made in order to accommodate the saved
RBP register and the return address.

Interoperability: Support for interoperabilitymeans the ability for

protected and unprotected modules to seamlessly invoke function-

ality within each other. In order to support interoperability between

protected and unprotected modules, we detect entry points within

the protected module and generate wrappers that (1) save the stack

pointer, (2) align the stack pointer to n byte boundary, (3) invoke

the functionality in the protected module, and (4) restore the stack

pointer before returning control to the unprotected module.

Backward Compatibility: We provide an implementation of SPI

in SPIglass, an LLVM-based prototype. SPIglass generates programs

that can execute without any modifications to the hardware or the

operating system.

5 STACK-POINTER INTEGRITY (SPI)
5.1 Defense Policy
SPIglass reserves each n-byte aligned address for the stack pointer.

Therefore, the function frame allocation and deallocation occur in

multiples of n-byte frames where n is a power of 2. This allows

low-overhead sanity checks on stack pointer.

Stack pointer invariant. After the allocation and deallocation of

each function frame, the following invariants hold:

I1 Within a function body, the stack pointer will be n-byte
aligned.

I2 No local variable will occupy an n-byte aligned memory

location.

I2 is essential to ensure that an attacker does not inject payload

into an n-byte aligned local variable, and then pivot to that location

using a gadget. Further, by setting n to be a power of 2, SPIglass
can quickly sanitize the stack pointer using a single instruction,

which greatly reduces enforcement overhead. A detailed evaluation

of performance with respect to alignment is presented in Section 6.

During compilation, the compiler sets up a stack frame to ac-

commodate local variables in a function. SPIglass enlarges each
stack frame to occupy one or more n-byte aligned frames. This

ensures that the stack pointer will be n-byte aligned at all times

except during function prologue and epilogue (i.e., stack allocation

and deallocation). Further, because the enlarged frame extends be-

yond already allocated variables, relative offsets of variables within

a frame remain unchanged. Code to sanitize the stack pointer is

inserted after each allocation and before each deallocation of stack

frame to assert n-byte alignment.

5.2 Function Frames Smaller than n bytes
If the stack space required by a function is less than the alignment

size, SPIglass assigns a single aligned stack frame for the function.

Furthermore, appropriate adjustments (amultiple of DWORD_SIZE)

is added to accommodate the storage of return address and callee

saved registers on the stack. This results in a memory overhead

which is evaluated in Section6.

5.3 Large Function frames
If the stack size required by the function is greater than the align-

ment size, it is possible for a local variable to be allocated on n-byte
alignment, which violates I2. In such cases, SPIglass partitions the
function’s stack frame into multiple n-byte aligned frames.

Frame partitioning. An algorithm to partition large stack frames

is presented in Algorithm 1. It is a simplified version of the knapsack

algorithm. Each partition contains local variables of the function

and a dummy variable in each n-byte aligned address. Procedure

InsertDummyVars allocates variables into frames until the n-byte
boundary is reached. Then, a new aligned frame is allocated and a

dummy variable is inserted at the boundary. The process is repeated

until all the variables in the function are allocated.

Although the dummy variable is not directly referenced in the

code, it might be possible for an attacker to overflow one of the

local variables to inject a payload beginning at the dummy variable.

In order to prevent such attacks, SPIglass sanitizes all the dummy

variables in a function before any direct or indirect branch instruc-

tion (line 30 in Algorithm 1). Because the number of functions with

large frames is relatively low, the overhead incurred in sanitizing

dummy variables is low.

Furthermore, if a variable of a function (e.g., a large array or

a structure) is larger than the aligned frame size, overlap on to

subsequent frames can not be avoided. Such functions can therefore

not be protected. In Section 6, we provide a distribution of stack

frame size, and make recommendations for optimal alignment.

120

5.4 Interoperability
While the unprotected modules do expose an attack surface, and

may be used by an attacker for pivoting, interoperability between

protected and unprotected modules is essential for practical use.

Firstly, it allows incremental deployment of the defense where

some modules are protected and some or not. Second, it allows

enforcement strategies where a trade-off between risk and mem-

ory overhead can be made. For example, protections can only be

applied to those modules that show high occurrences of explicit SP-

update instructions. We identify two interaction scenarios between

modules:

Protected to Unprotected (P2U): this control transition occurs when

a protected module invokes functionality in an unprotected mod-

ule. For example, if libc is not protected and a protected module

invokes functions in libc, the control transitions from a protected

module to an unprotected module (e.g., calls to printf, malloc). P2U

is inherently supported by SPIglass. Because the stack pointer is

not sanitized in the unprotected module, and the stack frame is

conserved when the control returns to the protected module, the

sanity checks in the protected module are unaffected by the call

and return from the unprotected module.

Unprotected to Protected (U2P): this control transition occurs when

an unprotected module invokes functionality in the protected mod-

ule. Because the unprotectedmodule does not align the stack pointer,

the sanity checks in the protected module will corrupt the stack

pointer before returning control to the unprotectedmodule. In order

to prevent stack pointer corruption, SPIglass intercepts the control
at all the entry points in the protected module, and aligns the stack

pointers to the n-byte boundary before resuming the execution at

the entry point.

Entry points in the protected module. We identify four types

of entry points to a module:

(1) Entry point function: This is the main function of an exe-

cutable or the init function of a library.

(2) Exported functions: Exported functions are explicit entry

points to a module that are stored in the EXPORT table of a

module. They are retrieved during compilation.

(3) Constructors and destructors of global objects: In C++, glob-

ally declared objects must be constructed before the main

function begins execution. In case of LLVM-clang, for each

global variable, the compiler front-end (clang) generates

a corresponding cxx_global_var_init function. Further-

more, global_ctors and global_dtors—lists of global con-
structors and destructors—are generated. These functions

are retrieved during compilation.

(4) Call-back functions: In some cases, function pointers are

passed from one module to another to be invoked at a later

point in execution. For example, the qsort function in the

standard C library accepts a comparator function that is in-

voked during comparison of two elements. If unhandled, the

invocation of the comparator function results in a U2P tran-

sition and leads to stack corruption. Functions that invoke

function pointers are identified during compilation, and the

potential targets are captured as entry points.

Algorithm 1 Algorithm to partition large frames in a program.

1: procedure PartitionFrames(Proдram, Aliдnment)
2: for each Func in Proдram do
3: if Func .LarдestVar .Size ≥ Aliдnment then
4: return ▷ Large objects must not be partitioned.

5: end if
6: if Func .FrameSize > Aliдnment then
7: InsertDummyVars (Func)
8: SanitizeDummyVars (Func)
9: end if
10: end for
11: return
12: end procedure

13: procedure InsertDummyVars(Func)
14: used ← CalleeSavedReдs .Size () ▷ Return addr, RBP, other

callee saved registers.

15: for each var in Func do
16: if used +var .Size ≥ Aliдnment then ▷ var crosses

frame boundary, so start a new frame.

17: NewFrame ← Func .AddAliдnedFrame ()
18: dummy = CreateVarAt (NewFrame .start)
19: Func .dummy_vars .add (dummy)
20: Func .CurrentFrame ← NewFrame
21: used ← dummy.Size
22: end if
23: Func .CurrentFrame .add (var)
24: used ← used +var .size
25: end for
26: end procedure

27: procedure SanitizeDummyVars(Func)
28: for each dummy in Func .dummy_vars do
29: NewInsts .add (CreateInst (MOV(dummy,0x0)))
30: end for
31: for each Inst in Func do
32: if Inst .isDirectOrIndirectBranch() then
33: InsertBe f ore (Inst ,NewInsts)
34: end if
35: end for
36: end procedure

Entry points are encapsulated in wrapper code that (1) saves the

current value of stack pointer, (2) aligns the stack pointer to the

next n-byte boundary, and (3) calls the corresponding entry point.

Upon return from the entry point, the wrapper restores the stack

pointer and returns the control back to the unprotected calling

module.

5.5 Dynamic allocation using alloca
Functionsmay request for dynamic allocation of stack space through

a call to alloca. In such cases, the function frame size is unknown

at compile time. Stack space is allocated during runtime either as

a call to alloca, or as an inlined function where an absolute SP-

update instruction is used to update the stack pointer. In either

121

case, after alloca completes execution, SPIglass sanitizes the stack
pointer by forcing it to the next largest n-byte boundary. Dealloca-
tion of the stack frame is unaffected because the stack pointer is

restored to the caller frame using an absolute SP-update instruc-

tion, and like any other deallocation, stack pointer is sanitized by

SPIglass. Furthermore, SPIglass can not inject dummy variables to

protect functions that use alloca if their frame size is larger than

n-bytes. A detailed discussion is presented in Section 7.2.

5.6 Abnormal Flows

setjmp and longjmp. SPIglass provides implicit support for setjmp
and longjmp. When a call to setjmp is encountered, the current

state including the instruction pointer and stack pointer are saved

into a buffer. Upon execution of longjmp the saved values are re-

stored. Because the stack pointer is n-byte aligned before the call

to setjmp (due to I1), it remains n-byte aligned after longjmp.

C++ Exceptions. Both clang and gcc follow Itanium C++ ABI to

implement exceptions in C++[1]. After an exception is thrown,

_Unwind_RaiseException is invoked to perform stack unwinding.

It unwinds one frame at a time and updates the stack pointer and

program counter until it reaches the frame with the exception

handler. This process eventually restores the appropriate execution

state including the stack pointer’s value before transferring control

to the landing pad. As a result, stack pointer integrity is consistent

before and after the exception.

JIT code transitions. If a browser is protected with SPI, but the

generated Just-In-Time (JIT) code is not, transition from the JIT

code to browser code results in a U2P transition. While we do not

support JIT code in the current iteration of SPIglass, one solution
is to identify and wrap entry points for such U2P transitions. A

more effective and robust solution would be to alter the JIT engine

to incorporate SPI in the JIT code.

5.7 SPIglass vs PBlocker and EMET
SPIglass accommodates a significantly larger attack space than

PBlocker and Microsoft’s EMET. First, PBlocker and EMET only

defend against inter-stack pivoting where the payload is located

outside the stack, whereas SPIglass can defend against all attacks

that violate SPI. Second, PBlocker cannot defend against stack-

aligned payloads that are injected through stack overflow (Section

4.3 in [32]). SPIglass can protect against such attacks because each

potential gadget in modules protected by SPIglass contains code
that sanitizes the stack pointer and forces it to n-byte alignment,

disallowing control transitions between gadgets.

5.8 Defeating COOP
Whenever the number of arguments passed in the main-loop gadget

is not equal to the number of arguments accepted by a gadget

(virtual function), the stack conservation property is violated, and

as such SPIglasswill stop such attacks. However, in x86-64, because

the first few arguments are passed in registers (rdi, rsi, rdx, rcx, r8,

r9), the misalignment of the stack pointer can be avoided for gadgets

with 6 or fewer arguments. While SPIglass does not stop such cases

where SPI property is not violated, it reduces the total number of

gadgets available to COOP and is likely to impact practicability of

the attack.

6 EVALUATION

Prototype and Test set. We developed a prototype codenamed

SPIglass based on LLVM compiler infrastructure. Though SPIglass
works specifically for 32 and 64 bit Intel x86 architectures, it can be

ported to other stack-based architectures with minimal changes.

We evaluated SPIglass for runtime and memory overhead for

different values of alignment on C and C++ benchmarks from SPEC

CPU2006. Although SPI as a property is independent of the program-

ming language, our implementation targets the LLVM compiler’s

clang front-end, and therefore floating point benchmarks written

in FORTRAN are excluded. We also report findings from our exper-

iments on stack utilization, specifically stack frame distribution for

Firefox 49.0a1, OpenSSL 1.1.0, Binutils 2.26, and Coreutils 8.25 to

provide insights on optimal alignment size. All of our experiments

were conducted on systems with quad-core Intel Core i7-4790 @

3.60GHz, with 16GB RAM, and running Ubuntu 14.04LTS.

6.1 Runtime Overhead
Overhead imposed by SPIglass for different values of alignment for

SPEC CPU2006 Integer and Floating point benchmarks is presented

in Table 1, and the mean overhead for the benchmarks is depicted

in Figure 6. On the one hand, larger alignment increases security

because larger objects can be accommodated without a need to

partition. But on the other hand, larger alignment could result in

a higher performance overhead. An alignment of 2048 results in

overhead double that of 512 despite no significant change in code.

This is due to the cache misses in the hardware that occur from

the large offsets in stack access. In the case of benchmark program

xalancbmk (an XML processor), the maximum alignment value is

n=128 bytes. Higher values of alignment require an increase in the

default stack space allocated to the process. This is because the

execute() function in xalancbmk recurses through all nodes in

the DOM tree, and runs out of stack memory for higher values of

alignment. This limitation was overcome by altering an OS-level

configuration to increase the default stack space for the process.

Further, we found dealII, sphinx3, perlbench, and omnetpp
imposed high overhead at 128-byte alignment. The root cause for

this counterintuitive behavior was that a significant fraction of

frames in these programs were (1) greater than 128 bytes in size

(458648, 17126 and 136367 frames for namd, dealII, and sphinx3
respectively were 2048 bytes or larger), and (2) belonged to func-

tions that executed frequently. This resulted in high overhead due

to partitioning. Our results show that 256-byte alignment provides

the best performance. On average, SPIglass introduces a low perfor-

mance overhead of 5.1% across all benchmarks. Excluding programs

that require modifying stack space limit like xalancbmk, overhead
imposed by SPIglass is only 4.0%.

6.2 Memory Overhead
Memory overhead is presented in Table 3. We implemented a Pin-

tool [21] that monitors the stack utilization by each process in the

benchmark programs and reports the maximum stack size used. The

122

Table 1: Percentage runtimeoverhead for the SPECCPU2006
programs when compared to vanilla LLVM 3.7.0 for differ-
ent alignment values. For xalancbmk, * indicates that the
default stack size limit was increased to 512MB to allow for
recursion.

Program 2048 1024 512 256 128
perlbench 4.6 4.5 0.6 3.7 8.1

bzip2 1.2 1.0 0.0 0.0 0.1

mcf 5.2 6.2 1.6 0.0 2.5

gobmk 1.9 2.3 0.1 0.0 0.0

hmmer 0.2 0.1 0.1 0.0 0.0

CINT sjeng 2.2 2.1 2.8 0.1 2.5

libquantum 1.2 1.6 0.0 0.0 1.1

h264ref 1.3 1.6 0.0 0.0 0.0

omnetpp 13.4 10.6 6.7 4.1 6.7

astar 5.6 4.6 1.1 1.5 3.7

xalancbmk 28.0* 25.8* 22.0* 21.5* 24.0

milc 2.8 4.0 0.0 3.0 0.8

namd 0.6 0.5 0.0 0.0 2.6

dealII 25.0 27.3 24.9 26.6 28.4

FP soplex 7.4 6.4 6.0 0.0 0.2

povray 10.4 8.1 7.4 7.1 6.9

lbm 2.1 1.6 0.2 0.0 0.3

sphinx3 2.3 1.7 1.0 0.0 5.5

Figure 6: Mean performance overhead for SPEC CPU2006
benchmark for alignments of 128, 256, 512, 1024 and 2048
bytes.

overhead in Table 3 represents the maximum stack size overhead

when compared to the stack utilization for programs compiled using

mainline LLVM-clang 3.7.0. As expected, mean memory overhead

scales linearly with respect to the alignment.

Most functions require frame sizes smaller than 128 bytes (Ta-

ble 7). In case of mcf, most functions require a frame size much

smaller than 128 bytes (16 to 32 bytes). Therefore, it shows the

highest overhead.

Table 2: SP-update instructions in Metasploit exploits for
vulnerabilities reported between 2013 and 2016.

Instruction CVE

xchg eax, esp

2014-0983, 2014-0307, 2013-3897, 2013-2551,

2013-3918, 2013-3893, 2013-3184, 2013-3163,

2013-3482, 2015-2433

pop esp 2013-3205, 2013-3906

mov esp, src

2013-2492, 2013-0753, 2013-5331, 2012-0439,

2012-594, 2012-0198, 2012-0284, 2013-3205,

2012-0779, 2013-3918, 2014-0322, 2013-1609,

2014-2364, 2014-0783, 2013-3482, 2013-3906,

2013-5447, 2014-0983, 2014-4076

sub esp, offset

2013-1347, 2013-3184, 2013-3163, 2014-2299,

2013-2343, 2013-1892, 2013-5019, 2014-3913,

2013-4800, 2014-0307, 2013-0753, 2013-3897,

2013-5331, 2013-1347, 2013-3205, 2013-2370,

2013-2551, 2013-3918, 2014-0322, 2013-0025,

2013-1017, 2013-3893, 2013-1690, 2013-3163,

2014-2364, 2014-0783, 2014-0782, 2014-3888,

2014-0784, 2013-4988, 2013-3482, 2013-3906

Table 3: SPIglass SPEC CPU2006 memory overhead for dif-
ferent alignments.

Total Peak Stack Size Overhead (%)
Benchmark 2048 1024 512 256 128
perlbench 46.0 24.0 24.0 5.2 2.5

bzip2 209.3 98.9 40.0 14.8 6.1

mcf 2120.4 1020.9 470.9 198.0 60.7

gobmk 454.7 181.2 58.7 10.8 3.9

hmmer 208.0 143.9 42.9 16.1 8.2

sjeng 11.8 5.1 1.8 1.4 0.8

libquantum 669.9 296.4 103.1 45.9 0.0

h264ref 8.1 4.4 1.9 0.8 0.5

omnetpp 9.1 4.3 4.3 0.9 0.2

astar 209.1 105.3 42.4 8.8 3.3

xalancbmk 1968.0 934.2 417.0 159.0 73.0

milc 414.1 163.3 44.7 14.1 12.1

namd 23.9 18.2 16.9 2.6 1.5

dealII 345.9 155.2 70.0 37.0 30.6

soplex 550.2 257.4 126.0 54.2 21.8

povray 322.9 125.3 56.1 33.9 26.5

lbm 221.9 116.3 43.9 17.9 10.2

sphinx3 6.6 2.3 0.6 0.5 0.1

Mean 590.4 279.7 122.3 46.0 17.6

6.3 Entry Points
We extracted entry points for the SPEC CPU2006 programs, and

for each entry point we implemented a wrapper to acclimate the

stack pointer. While most programs did not have any entry point

other than the main function, some C++ programs listed in Ta-

ble 5 contained global objects that needed non-default construction,

destruction or both. These entry points were invoked from libc.

Overall, we found the number of entry points to be a very small

fraction of the total number of functions in a program.

123

Table 4: Distribution of frame size for SPEC CPU2006 INT and FP benchmarks. The numbers indicate the number of times a
frame of a particular size was created during execution.

<128 128-256 256-512 512-1024 1024-2048 2048-4096 >4096
perlbench 67,577,603,233 2,430,183,316 3,989,197,903 101,307,234 3,611,416,453 1,915,625 986,731

bzip2 24,909,040,551 6,415 7,407 777,583,860 26,463,756 5,035 116,268

mcf 21,205,433,016 7,695,383 210,515 210,498 49,599 0 0

gobmk 63,379,354,006 1,159,551,112 597,332,823 1,120,457,864 363,415,069 23,021,937 59,197,274

hmmer 3,487,269,303 2,814,778 86,184,643 161,116,193 55,895,832 3,621,190 6,604,171

sjeng 86,167,077,158 567,059,193 302,946,922 232 14,500 0 688,658,543

libquantum 3,442,633,031 102,574 15 880,906,057 6 0 0

h264ref 113,721,593,513 1,770,026,953 510,674 9 26,782 0 0

astar 201,455,384,450 5,512,441 4,349,286 3,361,478 2,413,012 87,822 3

omnetpp 282,543,263,028 1,617,147,891 186,294,667 674,502 1,040,605 5,386 0

xalancbmk 988,032,289,983 1,048,661,060 370,991,236 385,374,116 50,473,966 833,487 1,243

milc 20,477,733,258 254,088,932 5017 89 8,000,802 0 0

namd 24,849,041,564 1,206,788 747,850 739,915 386,210 1 459,648

dealII 1,877,447,583,447 730,875,681 109,176,765 12,904,097 12,400,926 17,051 75

soplex 199,115,726,207 4,725,862 26965328 48,535 9,800,483 0 2

povray 193,195,853,378 7,357,676,846 264,348,601 112,189,636 72,008,245 405 17

lbm 5,313,401 386 255 4 95 0 0

sphinx3 21,493,717,167 627,875,480 1,256,876 1,776,513 32,790,376 2 136,365

Table 5: Non-main entry points for C++ programs in SPEC
CPU2006.

Program
Total

Functions
Entry
Points Percentage

xalancbmk 49635 109 0.22

omnetpp 3503 18 0.51

astar 213 2 0.94

h264ref 590 8 1.36

dealII 18725 22 0.12

povray 2013 1 0.05

6.4 Frame Size Distribution
Function frame size distribution for common programs is presented

in Table 7, and frequency of frames of differently-sized brackets

for SPEC CPU2006 programs are presented in Table 4. Frequency

distribution of the frame size offers vital information in deciding

the optimal alignment size. The main consumers of stack space are

local variables in functions. As a software development practice,

large objects are typically created on the heap, and not on the stack.

Therefore, more than 96% of all functions require under 256 bytes

of stack frame. As a result, partitioning is not required for most

functions when alignment is 256 bytes or higher.

Optimal alignment. Optimal alignment can vary from program

to program. However, we found n=256 to offer least performance

overhead and covers most functions in a program without the need

to partition. Given the low cost of memory, we believe the average

memory overhead of 32.6% is reasonable.

6.5 Attack Surface Ananlysis
We examined the number of relative SP-update gadgets SPIglass can
eliminate in binutils, coreutils and libc. The results are presented

in Table 6. Relative SP-update instructions are far more prevalent

Table 6: Summary of gadgets and SP-Update Instructions in
Coreutils and Binutils.

Suite Total # gadgets
Absolute

SPU
Relative
SPU

binutils 170265 15 2406

coreutils 71887 7 2571

libc.so 36515 3 845

than absolute SP-update instructions. Note that SPIglass can de-

fend against attacks that utilize relative SP-update instructions to

perform intra-stack pivoting, whereas EMET and PBlocker cannot.

Metasploit exploits: Furthermore, we analyzed the usage of SP-

update instructions in the exploits in the Metasploit [2] framework.

Results for CVEs reported between 2013 and 2016 are tabulated

in Table 2. For vulnerabilities with CVEs between 2010 and 2016,

we found 84 exploits that used sub esp, offset relative SP-

update instruction whereas 60 exploits utilized absolute SP-update

instructions xchg eax, esp and pop esp to carry out the exploit.

SPIglass can successfully defend against attacks that utilize relative

SP-update instructions in pivoting.

7 DISCUSSION
7.1 Effect on Recursion
While SPIglass does limit the total possible depth in non-tail recur-

sion, it has no impact on tail recursion. During tail recursion, the

compiler does not create a separate function frame for each instance

of recursion. Instead, it reuses the same stack frame for all recursive

invocations, introducing unconditional jmp instructions to mimic a

recursive call. Because the same stack frame is reused, the frame

size overhead introduced by SPIglass does not accumulate over all

the instances of recursion.

124

Table 7: Percentage distribution of frame size for 49.0a1, coreutils 8.25, binutils 2.26 and OpenSSL 1.1.0.

Program size < 128 128 ≤ size < 256 256 ≤ size < 512 512 ≤ size < 1024 1024 ≤ size < 2048 size ≥ 2048
Firefox 92.33 4.52 1.98 0.80 0.21 0.16

Coreutils 80.25 10.34 5.96 1.47 0.5 1.48

Binutils 92.3 5.58 1.47 0.31 0.16 0.19

OpenSSL 92.74 4.38 1.21 0.47 0.57 0.63

Table 8: Percentage distribution of variable size for Firefox 49.0a1, coreutils 8.25, binutils 2.26 and OpenSSL 1.1.0.

Program size < 128 128 ≤ size < 256 256 ≤ size < 512 512 ≤ size < 1024 1024 ≤ size < 2048 size ≥ 2048
Firefox 96.64 2.14 0.84 0.14 0.10 0.14

Coreutils 92.14 5.15 0.74 0.50 0.23 1.24

Binutils 99.48 0.31 0.05 0.0 0.10 0.09

OpenSSL 97.34 0.76 0.61 0.16 0.53 0.61

For non tail-call recursion, total possible depth of recursion re-

duces with the alignment used. However, the reduction can be

compensated by increasing the size of stack segment proportional

to the recursion depth.

7.2 Large Contiguous Allocations on Stack
Though uncommon, it is possible for a large object (e.g., array or

structure) whose size is greater than the alignment to be allocated

on the stack either statically (known at compile time), or dynam-

ically (using alloca). The variable size distribution for Firefox,

Coreutils, Binutils and Openssl is presented in Table 8. Most stack

variables are under 256 bytes in size. Partitioning large objects (e.g.,

structures > 2048 bytes in size) could lead to data corruption. When

sizes of such objects exceed the alignment size, there is a possi-

bility that an attacker injects payload into such large objects, and

performs a pivot operation to execute the payload. A potential solu-

tion is to relocate large objects to the heap, and rely on P1 to stop

pivoting. A similar technique is implemented by StackArmor [9].

7.3 Inlined Assembly
The ability to lay out the stack frame is key to enforcing SPI, par-

ticularly invariant I2. Modern compilers (GCC and LLVM) fix the

stack frame during the execution of a function. Any save/restore

operations are performed in the prologue and epilogue of a function.

However, it is possible for hand-crafted assembly code (possibly

inlined) to use push and pop instructions within function body.

Such inlined assembly code can hinder frame size calculations. Our

investigation did not reveal any legal compilation scenarios (on

gcc and LLVM) that incorporated implicit SP-update instructions

within function body.

8 RELATEDWORK

CFI-based defenses. Numerous efforts [3, 24–26, 33, 39] have

attempted to defeat code-reuse attacks by enforcing various forms

of CFI. These solutions extract the CFG and insert inlined refer-

ence monitors either by relying on source code and debugging

information, or by analyzing the binary itself [44, 45]. Variations

of CFI targeting either performance [7, 33, 43], or security [22, 40]

have been proposed. Fundamentally, completing the CFG is a hard

problem, and improving the precision of indirect branch resolution

is an ongoing direction of research [41]. SPIglass is orthogonal to
the above approaches, and in combination with CFI, SPI provides

stronger overall security.

ASLR-based defenses. ASLR [4, 38] was introduced as a means of

preventing attackers from reusing exploit code effectively against

multiple instantiations of a single vulnerable program. Recent ef-

forts such as binary stirring [42] and TASR [5] focus on increasing

the effectiveness of ASLR by increasing re-randomization frequency.

Redactor [10, 11] uses a combination of compiler transformations

and hardware-based enforcement to mark pages as execute-only,

thereby defeating the objective of memory disclosures. Techniques

that combine CFI and ASLR have also been proposed [23]. While

ASLR can strengthen SPI by making it hard to excavate gadgets,

SPI is not dependent on ASLR.

Stack-based defenses. Microsoft’s EMET [14] defends against

stack pivoting by checking the stack pointer within sensitive APIs

(like VirtualProtect) to ensure that it lies within the stack region of a

thread. However, DeMott demonstrated that the difference between

time-of-check to time-of-use of the stack pointer can be exploited

for practical attacks against EMET [13]. PBlocker [32] takes EMET’s

idea one step further and inserts assertion checks to ensure that the

stack pointer lies within the stack region immediately after each

SP-update instruction.

Fu et al. [16] introduced Slick, a solution that makes use of

exception handling metadata available in a binary to detect stack

layout corruptions caused by an ROP attack. Similar to MS-EMET,

there is a window of time between stack corruption and Slick’s

checks that can give the attacker an opportunity to hide her or

his trail. Slowinski et al. [37] introduces a memory corruption

defense that addresses diversion of control-flow through illegal

data modification detection. Their solutions assign an id (color) to

a memory object and a pointer. A pointer is only allowed access to

a memory object with matching id. SPI as a property is associated

with the stack pointer and not the contents of the stack. SPIglass
strictly monitors and enforces stack pointer invariants immediately

after each explicit stack pointer update.

Other defenses. Kuznetsov et al. [19] proposed Code-Pointer In-

tegrity (CPI), a policy guaranteeing the sanity of code pointers

such as function pointers and saved return addresses throughout

program execution. CPI partitions memory into safe and regular

125

regions. By limiting the subset of memory objects that are pro-

tected, CPI limits the amount of instrumentation compared to CFI

schemes and thus achieves a performance benefit. SPI is orthogo-

nal to CPI, and will harden CPI. Dynaguard by Petsios et al. [30]

resists brute-force canary attacks like BlindROP [6] through a per-

thread run-time update of canary values in all stack frames. SPI is

fundamentally different yet complementary to these defenses.

9 CONCLUSION
We introduce Stack-Pointer Integrity, a program integrity prop-

erty that aims to complement CFI and other modern defenses. We

present SPIglass, an LLVM-based implementation of SPI that makes

a memory trade off in order to improve security.

It provides interoperability, and strong security orthogonal to

CFI. We find the stack alignment size of 256 to be optimal. We

opensource SPIglass.

10 ACKNOWLEDGEMENT
We would like to thank anonymous reviewers for their feedback.

This research was supported in part by Office of Naval Research

Grant #N00014-17-1-2929 and National Science Foundation Award

#1566532. Any opinions, findings and conclusions in this paper are

those of the authors and do not necessarily reflect the views of the

funding agencies.

REFERENCES
[1] 2015. ExceptionHandling in LLVM. http://llvm.org/docs/ExceptionHandling.html.

(2015).

[2] 2017. Metasploit penetration testing framework.

http://http://www.metasploit.com/. (2017).

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow

Integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (CCS’05). 340–353.

[4] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. 2003. Address Obfuscation:

An Efficient Approach to Combat a Broad Range of Memory Error Exploits. In

USENIX Security, Vol. 3. 105–120.
[5] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed

Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. ACM, 268–279.

[6] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh.

2014. Hacking Blind. In IEEE Symposium on Security and Privacy (SP’2014). IEEE,
227–242.

[7] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. 2011. Mitigating Code-reuse Attacks

with Control-flow Locking. In Proceedings of the 27th Annual Computer Security
Applications Conference (ACSAC ’11). 353–362.

[8] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R

Gross. 2015. Control-flow bending: On the effectiveness of control-flow integrity.

In 24th USENIX Security Symposium (USENIX Security 15). 161–176.
[9] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giuf-

frida. 2015. StackArmor: Comprehensive Protection from Stack-based Memory

Error Vulnerabilities for Binaries. In Proceedings of the 22nd Annual Network and
Distributed System Security Symposium (NDSS’15).

[10] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R. Sadeghi, S. Brunthaler,

andM. Franz. 2015. Readactor: Practical Code Randomization Resilient toMemory

Disclosure. In 2015 IEEE Symposium on Security and Privacy. 763–780. https:

//doi.org/10.1109/SP.2015.52

[11] Stephen J Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,

Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael

Franz. 2015. It’s a TRaP: Table Randomization and Protection against Function-

Reuse Attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 243–255.

[12] Thurston HY Dang, Petros Maniatis, and David Wagner. 2015. The performance

cost of shadow stacks and stack canaries. In ACM Symposium on Information,
Computer and Communications Security, ASIACCS, Vol. 15.

[13] Jared DeMott. 2014. Bypassing EMET 4.1.

https://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-1.pdf.

(2014).

[14] J. DeMott. 2015. Bypassing EMET 4.1. IEEE Security Privacy 13, 4 (July 2015),

66–72. https://doi.org/10.1109/MSP.2015.75

[15] Erica Eng and Dan Caselden. 2015. Operation Clandestine Wolf – Adobe Flash

Zero-Day in APT3 Phishing Campaign. https://www.fireeye.com/blog/threat-

research/2015/06/operation-clandestine-wolf-adobe-flash-zero-day.html. (2015).

[16] Yangchun Fu, Jungwhan Rhee, Zhiqiang Lin, Zhichun Li, Hui Zhang, and Guofei

Jiang. 2016. Detecting Stack Layout Corruptions with Robust Stack Unwinding. In

Proceedings of the 19th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID’16). Paris, France.

[17] Robert Gawlik and Thorsten Holz. 2014. Towards Automated Integrity Protection

of C++ Virtual Function Tables in Binary Programs. In Proceedings of 30th Annual
Computer Security Applications Conference (ACSAC’14).

[18] Enes Göktaş, Elias Anthanasopoulos, Herbert Bos, and Georgios Portokalidis.

2014. Out of Control: Overcoming Control-Flow Integrity. In Proceedings of 35th
IEEE Symposium on Security and Privacy (Oakland’14).

[19] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar,

andDawn Song. 2014. Code-Pointer Integrity. InUSENIX Symposium onOperating
Systems Design and Implementation (OSDI).

[20] Julian Lettner, Benjamin Kollenda, Andrei Homescu, Per Larsen, Felix Schus-

ter, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, and Michael Franz. 2016.

Subversive-C: Abusing and Protecting Dynamic Message Dispatch. In 2016
USENIX Annual Technical Conference (USENIX ATC 16). USENIX Association, Den-

ver, CO, 209–221. https://www.usenix.org/conference/atc16/technical-sessions/

presentation/lettner

[21] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:

Building Customized Program Analysis Tools with Dynamic Instrumentation. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’05). 190–200.

[22] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. 2015. CCFI:

Cryptographically Enforced Control Flow Integrity. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security (CCS ’15).
ACM, New York, NY, USA, 941–951. https://doi.org/10.1145/2810103.2813676

[23] Vishwath Mohan, Per Larsen, Stefan Brunthaler, K Hamlen, and Michael Franz.

2015. Opaque control-flow integrity. In Symposium on Network and Distributed
System Security (NDSS).

[24] Ben Niu and Gang Tan. 2014. Modular Control-flow Integrity. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’14).

[25] Ben Niu and Gang Tan. 2014. RockJIT: Securing Just-In-Time Compilation

Using Modular Control-Flow Integrity. In Proceedings of 21st ACM Conference on
Computer and Communication Security (CCS ’14).

[26] Ben Niu and Gang Tan. 2015. Per-input control-flow integrity. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
ACM, 914–926.

[27] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano

Giuffrida. 2016. Poking holes in information hiding. In USENIX Security.
[28] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda.

2010. G-Free: defeating return-oriented programming through gadget-less bina-

ries. In Proceedings of the 26th Annual Computer Security Applications Conference.
ACM, 49–58.

[29] Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis. 2012. Smash-

ing the Gadgets: Hindering Return-Oriented Programming using in-place Code

Randomization. In IEEE Symposium on Security and Privacy (SP’2012). 601–615.
[30] Theofilos Petsios, Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D

Keromytis. 2015. DynaGuard: Armoring Canary-based Protections against Brute-

force Attacks. In Proceedings of the 31st Annual Computer Security Applications
Conference. ACM, 351–360.

[31] Aravind Prakash, Xunchao Hu, and Heng Yin. 2015. vfGuard: Strict Protection for

Virtual Function Calls in COTS C++ Binaries. In Proceedings of the 22nd Annual
Network and Distributed System Security Symposium (NDSS’15).

[32] Aravind Prakash and Heng Yin. 2015. Defeating ROP Through Denial of Stack

Pivot. In Proceedings of the 31st Annual Computer Security Applications Conference.
ACM, 111–120.

[33] Rui Qiao, Mingwei Zhang, and R Sekar. 2015. A Principled Approach for ROP De-

fense. In Proceedings of the 31st Annual Computer Security Applications Conference.
ACM, 101–110.

[34] Ahmad-Reza Sadeghi, Lucas Davi, and Per Larsen. 2015. Securing Legacy Soft-

ware against Real-World Code-Reuse Exploits: Utopia, Alchemy, or Possible

Future?. In Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security. ACM, 55–61.

[35] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86). In Proceedings of the 14th ACM conference
on Computer and communications security. ACM, 552–561.

[36] Felix Shuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-reza

Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming,

On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In

126

https://doi.org/10.1109/SP.2015.52
https://doi.org/10.1109/SP.2015.52
https://doi.org/10.1109/MSP.2015.75
https://www.usenix.org/conference/atc16/technical-sessions/presentation/lettner
https://www.usenix.org/conference/atc16/technical-sessions/presentation/lettner
https://doi.org/10.1145/2810103.2813676

Proceedings of 36th IEEE Symposium on Security and Privacy (Oakland’15).
[37] Asia Slowinska, Traian Stancescu, and Herbert Bos. 2012. Body Armor for Bina-

ries: Preventing Buffer Overflows Without Recompilation. In Presented as part of
the 2012 USENIX Annual Technical Conference (USENIX ATC 12). USENIX, Boston,
MA, 125–137. https://www.usenix.org/conference/atc12/technical-sessions/

presentation/slowinska

[38] PaX Team. 2003. PaX address space layout randomization (ASLR). (2003).

[39] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-

Flow Integrity in GCC&LLVM. In Proceedings of 23rd USENIX Security Symposium
(USENIX Security’14). 941–955.

[40] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,

Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-

Sensitive CFI. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 927–940.

[41] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawlowski, Xi Chen,

Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano

Giuffrida. 2016. A Tough call: Mitigating Advanced Code-Reuse Attacks At The

Binary Level. In Proceedings of 37th IEEE Symposium on Security and Privacy
(Oakland’16).

[42] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang Lin. 2012.

Binary stirring: Self-randomizing instruction addresses of legacy x86 binary code.

In Proceedings of the 2012 ACM conference on Computer and communications
security (CCS’12). ACM, 157–168.

[43] Chao Zhang, Scott A Carr, Tongxin Li, Yu Ding, Chengyu Song, Mathias Payer,

and Dawn Song. 2016. VTrust: Regaining Trust on Virtual Calls. In Symposium
on Network and Distributed System Security (NDSS’16). https://doi.org/10.14722/
ndss.2016.23164

[44] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-

Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity and

Randomization for Binary Executables. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland’13). 559–573.

[45] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In

Proceedings of the 22nd USENIX Security Symposium (Usenix Security’13). 337–352.

127

https://www.usenix.org/conference/atc12/technical-sessions/presentation/slowinska
https://www.usenix.org/conference/atc12/technical-sessions/presentation/slowinska
https://doi.org/10.14722/ndss.2016.23164
https://doi.org/10.14722/ndss.2016.23164

